Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
EBioMedicine ; 102: 105076, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38507876

ABSTRACT

BACKGROUND: GAA-FGF14 disease/spinocerebellar ataxia 27B is a recently described neurodegenerative disease caused by (GAA)≥250 expansions in the fibroblast growth factor 14 (FGF14) gene, but its phenotypic spectrum, pathogenic threshold, and evidence-based treatability remain to be established. We report on the frequency of FGF14 (GAA)≥250 and (GAA)200-249 expansions in a large cohort of patients with idiopathic downbeat nystagmus (DBN) and their response to 4-aminopyridine. METHODS: Retrospective cohort study of 170 patients with idiopathic DBN, comprising in-depth phenotyping and assessment of 4-aminopyridine treatment response, including re-analysis of placebo-controlled video-oculography treatment response data from a previous randomised double-blind 4-aminopyridine trial. FINDINGS: Frequency of FGF14 (GAA)≥250 expansions was 48% (82/170) in patients with idiopathic DBN. Additional cerebellar ocular motor signs were observed in 100% (82/82) and cerebellar ataxia in 43% (35/82) of patients carrying an FGF14 (GAA)≥250 expansion. FGF14 (GAA)200-249 alleles were enriched in patients with DBN (12%; 20/170) compared to controls (0.87%; 19/2191; OR, 15.20; 95% CI, 7.52-30.80; p < 0.0001). The phenotype of patients carrying a (GAA)200-249 allele closely mirrored that of patients carrying a (GAA)≥250 allele. Patients carrying a (GAA)≥250 or a (GAA)200-249 allele had a significantly greater clinician-reported (80%, 33/41 vs 31%, 5/16; RR, 2.58; 95% CI, 1.23-5.41; Fisher's exact test, p = 0.0011) and self-reported (59%, 32/54 vs 11%, 2/19; RR, 5.63; 95% CI, 1.49-21.27; Fisher's exact test, p = 0.00033) response to 4-aminopyridine treatment compared to patients carrying a (GAA)<200 allele. Placebo-controlled video-oculography data, available for four patients carrying an FGF14 (GAA)≥250 expansion, showed a significant decrease in slow phase velocity of DBN with 4-aminopyridine, but not placebo. INTERPRETATION: This study confirms that FGF14 GAA expansions are a frequent cause of DBN syndromes. It provides preliminary evidence that (GAA)200-249 alleles might be pathogenic. Finally, it provides large real-world and preliminary piloting placebo-controlled evidence for the efficacy of 4-aminopyridine in GAA-FGF14 disease. FUNDING: This work was supported by the Clinician Scientist program "PRECISE.net" funded by the Else Kröner-Fresenius-Stiftung (to CW, AT, and MSy), the grant 779257 "Solve-RD" from the European's Union Horizon 2020 research and innovation program (to MSy), and the grant 01EO 1401 by the German Federal Ministry of Education and Research (BMBF) (to MSt). This work was also supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) N° 441409627, as part of the PROSPAX consortium under the frame of EJP RD, the European Joint Programme on Rare Diseases, under the EJP RD COFUND-EJP N° 825575 (to MSy, BB and-as associated partner-SZ), the NIH National Institute of Neurological Disorders and Stroke (grant 2R01NS072248-11A1 to SZ), the Fondation Groupe Monaco (to BB), and the Montreal General Hospital Foundation (grant PT79418 to BB). The Care4Rare Canada Consortium is funded in part by Genome Canada and the Ontario Genomics Institute (OGI-147 to KMB), the Canadian Institutes of Health Research (CIHR GP1-155867 to KMB), Ontario Research Foundation, Genome Quebec, and the Children's Hospital of Eastern Ontario Foundation. The funders had no role in the conduct of this study.


Subject(s)
Fibroblast Growth Factors , Neurodegenerative Diseases , Nystagmus, Pathologic , Child , Humans , 4-Aminopyridine/therapeutic use , Neurodegenerative Diseases/drug therapy , Nystagmus, Pathologic/chemically induced , Nystagmus, Pathologic/drug therapy , Ontario , Retrospective Studies
2.
Alzheimers Res Ther ; 16(1): 66, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38539243

ABSTRACT

BACKGROUND: Pathogenic heterozygous mutations in the progranulin gene (GRN) are a key cause of frontotemporal dementia (FTD), leading to significantly reduced biofluid concentrations of the progranulin protein (PGRN). This has led to a number of ongoing therapeutic trials aiming to treat this form of FTD by increasing PGRN levels in mutation carriers. However, we currently lack a complete understanding of factors that affect PGRN levels and potential variation in measurement methods. Here, we aimed to address this gap in knowledge by systematically reviewing published literature on biofluid PGRN concentrations. METHODS: Published data including biofluid PGRN concentration, age, sex, diagnosis and GRN mutation were collected for 7071 individuals from 75 publications. The majority of analyses (72%) had focused on plasma PGRN concentrations, with many of these (56%) measured with a single assay type (Adipogen) and so the influence of mutation type, age at onset, sex, and diagnosis were investigated in this subset of the data. RESULTS: We established a plasma PGRN concentration cut-off between pathogenic mutation carriers and non-carriers of 74.8 ng/mL using the Adipogen assay based on 3301 individuals, with a CSF concentration cut-off of 3.43 ng/mL. Plasma PGRN concentration varied by GRN mutation type as well as by clinical diagnosis in those without a GRN mutation. Plasma PGRN concentration was significantly higher in women than men in GRN mutation carriers (p = 0.007) with a trend in non-carriers (p = 0.062), and there was a significant but weak positive correlation with age in both GRN mutation carriers and non-carriers. No significant association was seen with weight or with TMEM106B rs1990622 genotype. However, higher plasma PGRN levels were seen in those with the GRN rs5848 CC genotype in both GRN mutation carriers and non-carriers. CONCLUSIONS: These results further support the usefulness of PGRN concentration for the identification of the large majority of pathogenic mutations in the GRN gene. Furthermore, these results highlight the importance of considering additional factors, such as mutation type, sex and age when interpreting PGRN concentrations. This will be particularly important as we enter the era of trials for progranulin-associated FTD.


Subject(s)
Frontotemporal Dementia , Male , Humans , Female , Progranulins/genetics , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Intercellular Signaling Peptides and Proteins/genetics , Virulence , Mutation/genetics , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics
3.
Article in English | MEDLINE | ID: mdl-38253362

ABSTRACT

BACKGROUND: Blood neurofilament light chain (NfL) is increasingly considered as a key trial biomarker in genetic frontotemporal dementia (gFTD). We aimed to facilitate the use of NfL in gFTD multicentre trials by testing its (1) reliability across labs; (2) reliability to stratify gFTD disease stages; (3) comparability between blood matrices and (4) stability across recruiting sites. METHODS: Comparative analysis of blood NfL levels in a large gFTD cohort (GENFI) for (1)-(4), with n=344 samples (n=148 presymptomatic, n=11 converter, n=46 symptomatic subjects, with mutations in C9orf72, GRN or MAPT; and n=139 within-family controls), each measured in three different international labs by Simoa HD-1 analyzer. RESULTS: NfL revealed an excellent consistency (intraclass correlation coefficient (ICC) 0.964) and high reliability across the three labs (maximal bias (pg/mL) in Bland-Altman analysis: 1.12±1.20). High concordance of NfL across laboratories was moreover reflected by high areas under the curve for discriminating conversion stage against the (non-converting) presymptomatic stage across all three labs. Serum and plasma NfL were largely comparable (ICC 0.967). The robustness of NfL across 13 recruiting sites was demonstrated by a linear mixed effect model. CONCLUSIONS: Our results underline the suitability of blood NfL in gFTD multicentre trials, including cross-lab reliable stratification of the highly trial-relevant conversion stage, matrix comparability and cross-site robustness.

4.
Brain Imaging Behav ; 18(1): 66-72, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37855956

ABSTRACT

Structural and functional changes in cortical and subcortical regions have been reported in behavioral variant frontotemporal dementia (bvFTD), however, a multimodal approach may provide deeper insights into the neural correlates of neuropsychiatric symptoms. In this multicenter study, we measured cortical thickness (CTh) and subcortical volumes to identify structural abnormalities in 37 bvFTD patients, and 37 age- and sex-matched healthy controls. For seed regions with significant structural changes, whole-brain functional connectivity (FC) was examined in a sub-cohort of N = 22 bvFTD and N = 22 matched control subjects to detect complementary alterations in brain network organization. To explore the functional significance of the observed structural and functional deviations, correlations with clinical and neuropsychological outcomes were tested where available. Significantly decreased CTh was observed in the bvFTD group in caudal middle frontal gyrus, left pars opercularis, bilateral superior frontal and bilateral middle temporal gyrus along with subcortical volume reductions in bilateral basal ganglia, thalamus, hippocampus, and amygdala. Resting-state functional magnetic resonance imaging showed decreased FC in bvFTD between: dorsal striatum and left caudal middle frontal gyrus; putamen and fronto-parietal regions; pallidum and cerebellum. Conversely, bvFTD showed increased FC between: left middle temporal gyrus and paracingulate gyrus; caudate nucleus and insula; amygdala and parahippocampal gyrus. Additionally, cortical thickness in caudal, lateral and superior frontal regions as well as caudate nucleus volume correlated negatively with apathy severity scores of the Neuropsychiatry Inventory Questionnaire. In conclusion, multimodal structural and functional imaging indicates that fronto-striatal regions have a considerable influence on the severity of apathy in bvFTD.


Subject(s)
Apathy , Frontotemporal Dementia , Humans , Frontotemporal Dementia/pathology , Magnetic Resonance Imaging/methods , Brain , Gray Matter/pathology
5.
J Neurol Neurosurg Psychiatry ; 95(2): 175-179, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37399286

ABSTRACT

BACKGROUND: Intronic GAA repeat expansions in the fibroblast growth factor 14 gene (FGF14) have recently been identified as a common cause of ataxia with potential phenotypic overlap with RFC1-related cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS). Our objective was to report on the frequency of intronic FGF14 GAA repeat expansions in patients with an unexplained CANVAS-like phenotype. METHODS: We recruited 45 patients negative for biallelic RFC1 repeat expansions with a combination of cerebellar ataxia plus peripheral neuropathy and/or bilateral vestibulopathy (BVP), and genotyped the FGF14 repeat locus. Phenotypic features of GAA-FGF14-positive versus GAA-FGF14-negative patients were compared. RESULTS: Frequency of FGF14 GAA repeat expansions was 38% (17/45) in the entire cohort, 38% (5/13) in the subgroup with cerebellar ataxia plus polyneuropathy, 43% (9/21) in the subgroup with cerebellar ataxia plus BVP and 27% (3/11) in patients with all three features. BVP was observed in 75% (12/16) of GAA-FGF14-positive patients. Polyneuropathy was at most mild and of mixed sensorimotor type in six of eight GAA-FGF14-positive patients. Family history of ataxia (59% vs 15%; p=0.007) was significantly more frequent and permanent cerebellar dysarthria (12% vs 54%; p=0.009) significantly less frequent in GAA-FGF14-positive than in GAA-FGF14-negative patients. Age at onset was inversely correlated to the size of the repeat expansion (Pearson's r, -0.67; R2=0.45; p=0.0031). CONCLUSIONS: GAA-FGF14-related disease is a common cause of cerebellar ataxia with polyneuropathy and/or BVP, and should be included in the differential diagnosis of RFC1 CANVAS and disease spectrum.


Subject(s)
Bilateral Vestibulopathy , Cerebellar Ataxia , Peripheral Nervous System Diseases , Polyneuropathies , Vestibular Diseases , Humans , Ataxia/genetics , Bilateral Vestibulopathy/genetics , Bilateral Vestibulopathy/diagnosis , Cerebellar Ataxia/genetics , Cerebellar Ataxia/diagnosis , Syndrome
6.
Ann Neurol ; 95(2): 400-406, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37962377

ABSTRACT

Spinocerebellar ataxia type 3/Machado-Joseph disease is the most common autosomal dominant ataxia. In view of the development of targeted therapies, knowledge of early biomarker changes is needed. We analyzed cross-sectional data of 292 spinocerebellar ataxia type 3/Machado-Joseph disease mutation carriers. Blood concentrations of mutant ATXN3 were high before and after ataxia onset, whereas neurofilament light deviated from normal 13.3 years before onset. Pons and cerebellar white matter volumes decreased and deviated from normal 2.2 years and 0.6 years before ataxia onset. We propose a staging model of spinocerebellar ataxia type 3/Machado-Joseph disease that includes a biomarker stage characterized by objective indicators of neurodegeneration before ataxia onset. ANN NEUROL 2024;95:400-406.


Subject(s)
Cerebellar Ataxia , Machado-Joseph Disease , Humans , Machado-Joseph Disease/genetics , Cross-Sectional Studies , Ataxia , Biomarkers
7.
Diagnostics (Basel) ; 13(18)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37761230

ABSTRACT

(1) Background: to test the diagnostic performance of a fully convolutional neural network-based software prototype for clot detection in intracranial arteries using non-enhanced computed tomography (NECT) imaging data. (2) Methods: we retrospectively identified 85 patients with stroke imaging and one intracranial vessel occlusion. An automated clot detection prototype computed clot location, clot length, and clot volume in NECT scans. Clot detection rates were compared to the visual assessment of the hyperdense artery sign by two neuroradiologists. CT angiography (CTA) was used as the ground truth. Additionally, NIHSS, ASPECTS, type of therapy, and TOAST were registered to assess the relationship between clinical parameters, image results, and chosen therapy. (3) Results: the overall detection rate of the software was 66%, while the human readers had lower rates of 46% and 24%, respectively. Clot detection rates of the automated software were best in the proximal middle cerebral artery (MCA) and the intracranial carotid artery (ICA) with 88-92% followed by the more distal MCA and basilar artery with 67-69%. There was a high correlation between greater clot length and interventional thrombectomy and between smaller clot length and rather conservative treatment. (4) Conclusions: the automated clot detection prototype has the potential to detect intracranial arterial thromboembolism in NECT images, particularly in the ICA and MCA. Thus, it could support radiologists in emergency settings to speed up the diagnosis of acute ischemic stroke, especially in settings where CTA is not available.

9.
medRxiv ; 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37577458

ABSTRACT

The cause of downbeat nystagmus (DBN) remains unknown in approximately 30% of patients (idiopathic DBN). Here, we hypothesized that: (i) FGF14 (GAA) ≥250 repeat expansions represent a frequent genetic cause of idiopathic DBN syndromes, (ii) are treatable with 4-aminopyridine (4-AP), and (iii) FGF14 (GAA) 200-249 alleles are potentially pathogenic. We conducted a multi-modal cohort study of 170 patients with idiopathic DBN that comprised: in-depth ocular motor, neurological, and disease evolution phenotyping; assessment of 4-AP treatment response, including re-analysis of placebo-controlled video-oculography treatment response data from a previous randomized double-blind 4-AP trial; and genotyping of the FGF14 repeat. Frequency of FGF14 (GAA) ≥250 expansions was 48% (82/170) in the entire idiopathic DBN cohort. Additional cerebellar ocular motor signs were observed in 100% (82/82), cerebellar ataxia in 43% (35/82), and extracerebellar features in 21% (17/82) of (GAA) ≥250 - FGF14 patients. Alleles of 200 to 249 GAA repeats were enriched in patients with DBN (12%; 20/170) compared to controls (0.87%; 19/2,191; OR, 15.20; 95% CI, 7.52-30.80; p =9.876e-14). The phenotype of (GAA) 200-249 - FGF14 patients closely mirrored that of (GAA) ≥250 - FGF14 patients. (GAA) ≥250 - FGF14 and (GAA) 200-249 - FGF14 patients had a significantly greater clinician-reported (80% vs 31%; p =0.0011) and self-reported (59% vs 11%; p =0.0003) response rate to 4-AP treatment compared to (GAA) <200 - FGF14 patients. This included a treatment response with high relevance to everyday living, as exemplified by an improvement of 2 FARS stages in some cases. Placebo-controlled video-oculography data of four (GAA) ≥250 - FGF14 patients previously enrolled in a 4-AP randomized double-blind trial showed a significant decrease in slow phase velocity of DBN with 4-AP, but not placebo. This study shows that FGF14 GAA repeat expansions are a highly frequent genetic cause of DBN syndromes, especially when associated with additional cerebellar features. Moreover, they genetically stratify a subgroup of patients with DBN that appear to be highly responsive to 4-AP, thus paving the way for a "theranostics" approach in DBN syndromes.

11.
Brain ; 146(10): 4144-4157, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37165652

ABSTRACT

Ataxia due to an autosomal dominant intronic GAA repeat expansion in FGF14 [GAA-FGF14 ataxia, spinocerebellar ataxia 27B (SCA27B)] has recently been identified as one of the most common genetic late-onset ataxias. We here aimed to characterize its phenotypic profile, natural history progression, and 4-aminopyridine (4-AP) treatment response. We conducted a multi-modal cohort study of 50 GAA-FGF14 patients, comprising in-depth phenotyping, cross-sectional and longitudinal progression data (up to 7 years), MRI findings, serum neurofilament light (sNfL) levels, neuropathology, and 4-AP treatment response data, including a series of n-of-1 treatment studies. GAA-FGF14 ataxia consistently presented as late-onset [60.0 years (53.5-68.5), median (interquartile range)] pancerebellar syndrome, partly combined with afferent sensory deficits (55%) and dysautonomia (28%). Dysautonomia increased with duration while cognitive impairment remained infrequent, even in advanced stages. Cross-sectional and longitudinal assessments consistently indicated mild progression of ataxia [0.29 Scale for the Assessment and Rating of Ataxia (SARA) points/year], not exceeding a moderate disease severity even in advanced stages (maximum SARA score: 18 points). Functional impairment increased relatively slowly (unilateral mobility aids after 8 years in 50% of patients). Corresponding to slow progression and low extra-cerebellar involvement, sNfL was not increased relative to controls. Concurrent second diseases (including progressive supranuclear palsy neuropathology) represented major individual aggravators of disease severity, constituting important caveats for planning future GAA-FGF14 trials. A treatment response to 4-AP with relevance for everyday living was reported by 86% of treated patients. A series of three prospective n-of-1 treatment experiences with on/off design showed marked reduction in daily symptomatic time and symptom severity on 4-AP. Our study characterizes the phenotypic profile, natural history progression, and 4-AP treatment response of GAA-FGF14 ataxia. It paves the way towards large-scale natural history studies and 4-AP treatment trials in this newly discovered, possibly most frequent, and treatable late-onset ataxia.


Subject(s)
Cerebellar Ataxia , Spinocerebellar Ataxias , Humans , Cerebellar Ataxia/genetics , Cohort Studies , Cross-Sectional Studies , Disease Progression , Prospective Studies
12.
Mov Disord ; 38(4): 654-664, 2023 04.
Article in English | MEDLINE | ID: mdl-36695111

ABSTRACT

BACKGROUND: Sporadic adult-onset ataxias without known genetic or acquired cause are subdivided into multiple system atrophy of cerebellar type (MSA-C) and sporadic adult-onset ataxia of unknown etiology (SAOA). OBJECTIVES: To study the differential evolution of both conditions including plasma neurofilament light chain (NfL) levels and magnetic resonance imaging (MRI) markers. METHODS: SPORTAX is a prospective registry of sporadic ataxia patients with an onset >40 years. Scale for the Assessment and Rating of Ataxia was the primary outcome measure. In subgroups, blood samples were taken and MRIs performed. Plasma NfL was measured via a single molecule assay. Regional brain volumes were automatically measured. To assess signal changes, we defined the pons and middle cerebellar peduncle abnormality score (PMAS). Using mixed-effects models, we analyzed changes on a time scale starting with ataxia onset. RESULTS: Of 404 patients without genetic diagnosis, 130 met criteria of probable MSA-C at baseline and 26 during follow-up suggesting clinical conversion to MSA-C. The remaining 248 were classified as SAOA. At baseline, NfL, cerebellar white matter (CWM) and pons volume, and PMAS separated MSA-C from SAOA. NfL decreased in MSA-C and did not change in SAOA. CWM and pons volume decreased faster, whereas PMAS increased faster in MSA-C. In MSA-C, pons volume had highest sensitivity to change, and PMAS was a predictor of faster progression. Fulfillment of possible MSA criteria, NfL and PMAS were risk factors, CWM and pons volume protective factors for conversion to MSA-C. CONCLUSIONS: This study provides detailed information on differential evolution and prognostic relevance of biomarkers in MSA-C and SAOA. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Cerebellar Ataxia , Multiple System Atrophy , Humans , Adult , Cerebellar Ataxia/diagnosis , Ataxia/genetics , Cerebellum , Multiple System Atrophy/diagnosis , Biomarkers
13.
N Engl J Med ; 388(2): 128-141, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36516086

ABSTRACT

BACKGROUND: The late-onset cerebellar ataxias (LOCAs) have largely resisted molecular diagnosis. METHODS: We sequenced the genomes of six persons with autosomal dominant LOCA who were members of three French Canadian families and identified a candidate pathogenic repeat expansion. We then tested for association between the repeat expansion and disease in two independent case-control series - one French Canadian (66 patients and 209 controls) and the other German (228 patients and 199 controls). We also genotyped the repeat in 20 Australian and 31 Indian index patients. We assayed gene and protein expression in two postmortem cerebellum specimens and two induced pluripotent stem-cell (iPSC)-derived motor-neuron cell lines. RESULTS: In the six French Canadian patients, we identified a GAA repeat expansion deep in the first intron of FGF14, which encodes fibroblast growth factor 14. Cosegregation of the repeat expansion with disease in the families supported a pathogenic threshold of at least 250 GAA repeats ([GAA]≥250). There was significant association between FGF14 (GAA)≥250 expansions and LOCA in the French Canadian series (odds ratio, 105.60; 95% confidence interval [CI], 31.09 to 334.20; P<0.001) and in the German series (odds ratio, 8.76; 95% CI, 3.45 to 20.84; P<0.001). The repeat expansion was present in 61%, 18%, 15%, and 10% of French Canadian, German, Australian, and Indian index patients, respectively. In total, we identified 128 patients with LOCA who carried an FGF14 (GAA)≥250 expansion. Postmortem cerebellum specimens and iPSC-derived motor neurons from patients showed reduced expression of FGF14 RNA and protein. CONCLUSIONS: A dominantly inherited deep intronic GAA repeat expansion in FGF14 was found to be associated with LOCA. (Funded by Fondation Groupe Monaco and others.).


Subject(s)
Cerebellar Ataxia , DNA Repeat Expansion , Introns , Humans , Australia , Canada , Cerebellar Ataxia/genetics , Cerebellar Ataxia/pathology , Friedreich Ataxia/genetics , Friedreich Ataxia/pathology , Introns/genetics , DNA Repeat Expansion/genetics
14.
Int J Mol Sci ; 23(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36362248

ABSTRACT

In patients with slowly progressive spastic paraparesis, the differential diagnosis of primary progressive multiple sclerosis (PPMS) and hereditary spastic paraplegia (HSP) can be challenging. Serum neurofilament light chain (sNfL) and glial fibrillary acidic protein (sGFAP) are promising fluid biomarkers to support the diagnostic workup. Serum NfL is a marker of neuroaxonal decay sensitive to temporal changes, while elevated sGFAP levels may reflect astrocytal involvement in PPMS. We assessed sNfL and sGFAP levels in 25 patients with PPMS, 25 patients with SPG4 (the most common type of HSP) and 60 controls, using the highly sensitive single-molecule array (Simoa) platform. Patients were matched in age, sex, age at onset, disease duration and disease severity. Serum NfL levels were significantly increased in PPMS compared to SPG4 (p = 0.041, partial η² = 0.088), and there was a trend toward relatively higher sGFAP levels in PPMS (p = 0.097). However, due to overlapping biomarker values in both groups, we did not find sNfL and sGFAP to be useful as differential biomarkers in our cohort. The temporal dynamics indicate sNfL and sGFAP levels are most markedly elevated in PPMS in earlier disease stages, supporting their investigation in this group most in need of a diagnostic biomarker.


Subject(s)
Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis , Spastic Paraplegia, Hereditary , Humans , Glial Fibrillary Acidic Protein , Intermediate Filaments , Multiple Sclerosis/diagnosis , Spastic Paraplegia, Hereditary/diagnosis , Neurofilament Proteins , Biomarkers
15.
Brain ; 145(12): 4398-4408, 2022 12 19.
Article in English | MEDLINE | ID: mdl-35903017

ABSTRACT

Disease-modifying treatments are currently being trialled in multiple system atrophy. Approaches based solely on clinical measures are challenged by heterogeneity of phenotype and pathogenic complexity. Neurofilament light chain protein has been explored as a reliable biomarker in several neurodegenerative disorders but data on multiple system atrophy have been limited. Therefore, neurofilament light chain is not yet routinely used as an outcome measure in multiple system atrophy. We aimed to comprehensively investigate the role and dynamics of neurofilament light chain in multiple system atrophy combined with cross-sectional and longitudinal clinical and imaging scales and for subject trial selection. In this cohort study, we recruited cross-sectional and longitudinal cases in a multicentre European set-up. Plasma and CSF neurofilament light chain concentrations were measured at baseline from 212 multiple system atrophy cases, annually for a mean period of 2 years in 44 multiple system atrophy patients in conjunction with clinical, neuropsychological and MRI brain assessments. Baseline neurofilament light chain characteristics were compared between groups. Cox regression was used to assess survival; receiver operating characteristic analysis to assess the ability of neurofilament light chain to distinguish between multiple system atrophy patients and healthy controls. Multivariate linear mixed-effects models were used to analyse longitudinal neurofilament light chain changes and correlated with clinical and imaging parameters. Polynomial models were used to determine the differential trajectories of neurofilament light chain in multiple system atrophy. We estimated sample sizes for trials aiming to decrease neurofilament light chain levels. We show that in multiple system atrophy, baseline plasma neurofilament light chain levels were better predictors of clinical progression, survival and degree of brain atrophy than the neurofilament light chain rate of change. Comparative analysis of multiple system atrophy progression over the course of disease, using plasma neurofilament light chain and clinical rating scales, indicated that neurofilament light chain levels rise as the motor symptoms progress, followed by deceleration in advanced stages. Sample size prediction suggested that significantly lower trial participant numbers would be needed to demonstrate treatment effects when incorporating plasma neurofilament light chain values into multiple system atrophy clinical trials in comparison to clinical measures alone. In conclusion, neurofilament light chain correlates with clinical disease severity, progression and prognosis in multiple system atrophy. Combined with clinical and imaging analysis, neurofilament light chain can inform patient stratification and serve as a reliable biomarker of treatment response in future multiple system atrophy trials of putative disease-modifying agents.


Subject(s)
Multiple System Atrophy , Humans , Cohort Studies , Cross-Sectional Studies , Intermediate Filaments , Neurofilament Proteins , Biomarkers , Disease Progression
16.
Neurology ; 98(20): e1985-e1996, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35264424

ABSTRACT

BACKGROUND AND OBJECTIVES: Neurofilament light (NfL) appears to be a promising fluid biomarker in repeat-expansion spinocerebellar ataxias (SCAs), with piloting studies in mixed SCA cohorts suggesting that NfL might be increased at the ataxic stage of SCA type 1 (SCA1). We here hypothesized that NfL is increased not only at the ataxic stage of SCA1, but also at its (likely most treatment-relevant) preataxic stage. METHODS: We assessed serum NfL (sNfL) and CSF NfL (cNfL) levels in both preataxic and ataxic SCA1, leveraging a multicentric cohort recruited at 6 European university centers, and clinical follow-up data, including actually observed (rather than only predicted) conversion to the ataxic stage. Levels of sNfL and cNfL were assessed by single-molecule array and ELISA technique, respectively. RESULTS: Forty individuals with SCA1 (23 preataxic, 17 ataxic) and 89 controls were enrolled, including 11 preataxic individuals converting to the ataxic stage. sNfL levels were increased at the preataxic (median 15.5 pg/mL [interquartile range 10.5-21.1 pg/mL]) and ataxic stage (31.6 pg/mL [26.2-37.7 pg/mL]) compared to controls (6.0 pg/mL [4.7-8.6 pg/mL]), yielding high age-corrected effect sizes (preataxic: r = 0.62, ataxic: r = 0.63). sNfL increases were paralleled by increases of cNfL at both the preataxic and ataxic stage. In preataxic individuals, sNfL levels increased with proximity to predicted ataxia onset, with significant sNfL elevations already 5 years before onset, and confirmed in preataxic individuals with actually observed ataxia onset. sNfL increases were detected already in preataxic individuals with SCA1 without volumetric atrophy of cerebellum or pons, suggesting that sNfL might be more sensitive to early preataxic neurodegeneration than the currently known most change-sensitive regions in volumetric MRI. Using longitudinal sNfL measurements, we estimated sample sizes for clinical trials with the reduction of sNfL as the endpoint. DISCUSSION: sNfL levels might provide easily accessible peripheral biomarkers in both preataxic and ataxic SCA1, allowing stratification of preataxic individuals regarding proximity to onset, early detection of neurodegeneration even before volumetric MRI alterations, and potentially capture of treatment response in clinical trials. TRIAL REGISTRATION INFORMATION: ClinicalTrials.gov Identifier: NCT01037777. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that NfL levels are increased in both ataxic and preataxic SCA1 and are associated with ataxia onset.


Subject(s)
Cerebellar Ataxia , Spinocerebellar Ataxias , Atrophy/pathology , Biomarkers , Cerebellar Ataxia/pathology , Cerebellum/pathology , Humans , Intermediate Filaments , Neurofilament Proteins , Spinocerebellar Ataxias/diagnosis
18.
Ann Clin Transl Neurol ; 9(3): 326-338, 2022 03.
Article in English | MEDLINE | ID: mdl-35171517

ABSTRACT

OBJECTIVE: While the anticipated rise of disease-modifying therapies calls for reliable trial outcome parameters, fluid biomarkers are lacking in spastic paraplegia type 4 (SPG4), the most prevalent form of hereditary spastic paraplegia. We therefore investigated serum neurofilament light chain (sNfL) as a potential therapy response, diagnostic, monitoring, and prognostic biomarker in SPG4. METHODS: We assessed sNfL levels in 93 patients with SPG4 and 60 healthy controls. The longitudinal study of sNfL levels in SPG4 patients covered a baseline, 1-year follow-up and 2-year follow-up visit. RESULTS: Levels of sNfL were significantly increased in patients with genetically confirmed SPG4 compared to healthy controls matched in age and sex (p = 0.013, r = 0.2). Our cross-sectional analysis revealed a greater difference in sNfL levels between patients and controls in younger ages with decreasing fold change of patient sNfL elevation at older ages. Over our observational period of 2 years, sNfL levels remained stable in SPG4 patients. Disease severity and progression did not correlate with sNfL levels. INTERPRETATION: Our longitudinal data indicate a stable turnover of sNfL in manifest SPG4; therefore, sNfL levels are not suitable to monitor disease progression in SPG4. However, sNfL may be valuable as a therapy response biomarker, since its turnover could be modified by interventions. As the course of sNfL levels appears to be most dynamic around the onset of SPG4, the ability to detect a therapy response appears to be especially promising in younger patients, matching the need to initiate treatment in early disease stages.


Subject(s)
Spastic Paraplegia, Hereditary , Biomarkers , Cross-Sectional Studies , Humans , Intermediate Filaments , Longitudinal Studies , Paraplegia , Spastic Paraplegia, Hereditary/diagnosis
19.
Alzheimer Dis Assoc Disord ; 36(1): 44-51, 2022.
Article in English | MEDLINE | ID: mdl-35001030

ABSTRACT

BACKGROUND: Primary progressive aphasia (PPA) may present with three distinct clinical sybtypes: semantic variant PPA (svPPA), nonfluent/agrammatic variant PPA (nfvPPA), and logopenic variant PPA (lvPPA). OBJECTIVE: The aim was to examine the utility of the German version of the Repeat and Point (R&P) Test for subtyping patients with PPA. METHOD: During the R&P Test, the examiner reads out aloud a noun and the participants are asked to repeat the word and subsequently point to the corresponding picture. Data from 204 patients (68 svPPA, 85 nfvPPA, and 51 lvPPA) and 33 healthy controls were analyzed. RESULTS: Controls completed both tasks with >90% accuracy. Patients with svPPA had high scores in repetition (mean=9.2±1.32) but low scores in pointing (mean=6±2.52). In contrast, patients with nfvPPA and lvPPA performed comparably in both tasks with lower scores in repetition (mean=7.4±2.7 for nfvPPA and 8.2±2.34 for lvPPA) but higher scores in pointing (mean=8.9±1.41 for nfvPPA and 8.6±1.62 for lvPPA). The R&P Test had high accuracy discriminating svPPA from nfvPPA (83% accuracy) and lvPPA (79% accuracy). However, there was low accuracy discriminating nfvPPA from lvPPA (<60%). CONCLUSION: The R&P Test helps to differentiate svPPA from 2 nonsemantic variants (nfvPPA and lvPPA). However, additional tests are required for the differentiation of nfvPPA and lvPPA.


Subject(s)
Aphasia, Primary Progressive , Primary Progressive Nonfluent Aphasia , Aphasia, Primary Progressive/diagnosis , Humans , Language
20.
Brain ; 145(5): 1805-1817, 2022 06 03.
Article in English | MEDLINE | ID: mdl-34633446

ABSTRACT

Several CSF and blood biomarkers for genetic frontotemporal dementia have been proposed, including those reflecting neuroaxonal loss (neurofilament light chain and phosphorylated neurofilament heavy chain), synapse dysfunction [neuronal pentraxin 2 (NPTX2)], astrogliosis (glial fibrillary acidic protein) and complement activation (C1q, C3b). Determining the sequence in which biomarkers become abnormal over the course of disease could facilitate disease staging and help identify mutation carriers with prodromal or early-stage frontotemporal dementia, which is especially important as pharmaceutical trials emerge. We aimed to model the sequence of biomarker abnormalities in presymptomatic and symptomatic genetic frontotemporal dementia using cross-sectional data from the Genetic Frontotemporal dementia Initiative (GENFI), a longitudinal cohort study. Two-hundred and seventy-five presymptomatic and 127 symptomatic carriers of mutations in GRN, C9orf72 or MAPT, as well as 247 non-carriers, were selected from the GENFI cohort based on availability of one or more of the aforementioned biomarkers. Nine presymptomatic carriers developed symptoms within 18 months of sample collection ('converters'). Sequences of biomarker abnormalities were modelled for the entire group using discriminative event-based modelling (DEBM) and for each genetic subgroup using co-initialized DEBM. These models estimate probabilistic biomarker abnormalities in a data-driven way and do not rely on previous diagnostic information or biomarker cut-off points. Using cross-validation, subjects were subsequently assigned a disease stage based on their position along the disease progression timeline. CSF NPTX2 was the first biomarker to become abnormal, followed by blood and CSF neurofilament light chain, blood phosphorylated neurofilament heavy chain, blood glial fibrillary acidic protein and finally CSF C3b and C1q. Biomarker orderings did not differ significantly between genetic subgroups, but more uncertainty was noted in the C9orf72 and MAPT groups than for GRN. Estimated disease stages could distinguish symptomatic from presymptomatic carriers and non-carriers with areas under the curve of 0.84 (95% confidence interval 0.80-0.89) and 0.90 (0.86-0.94) respectively. The areas under the curve to distinguish converters from non-converting presymptomatic carriers was 0.85 (0.75-0.95). Our data-driven model of genetic frontotemporal dementia revealed that NPTX2 and neurofilament light chain are the earliest to change among the selected biomarkers. Further research should investigate their utility as candidate selection tools for pharmaceutical trials. The model's ability to accurately estimate individual disease stages could improve patient stratification and track the efficacy of therapeutic interventions.


Subject(s)
Frontotemporal Dementia , Biomarkers , C9orf72 Protein/genetics , Complement C1q , Cross-Sectional Studies , Disease Progression , Frontotemporal Dementia/diagnosis , Frontotemporal Dementia/genetics , Glial Fibrillary Acidic Protein , Humans , Longitudinal Studies , Mutation , tau Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...